Characterization of H_2O_2 resistant microbes isolated from spacecraft assembly facility

K. Venkateswaran, C. Echeverria, S. Chung, C. Basic, and R. Koukol.

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.

Contact person: kjvenkat@jpl.nasa.gov

Collection of particles

- Stainless steel
- •Z307
- •S13GLO-1
- •463-3-8
- •NS43G

Four of these paints were coated on aluminum

(1" x 2")

Witness plates were exposed for 7 to 9 months at SAF (High Bay 1)

Assay

NASA bioburden assay; Epifluorescence Microscopy 16S rDNA sequence

Microscopic images of witness plates

Stainless steel

Z-307

S13GLO-1

NS43G (10x)

- Hard to differentiate microbes from particles.
- •NS43G paint attracts more particles. 463-3-8

NASA Bioburden Assay

A novel Bacillus species that produce large spore

Phylogeny of Bacillus species isolated from SAF

Are SAF conditions extreme?

- About 44% of 39 strains isolated as per NASA heat shock procedure (85°C for 15-min) and 10% of 40 strains isolated as per NASA standard assay (grown in TSA at 32 °C) showed growth at 60°C.
- 50% of 89 strains showed growth at high salt concentration (10% NaCl conc.)
- Majority of the cultivable microbes were Gram positives and mainly spore-formers.
- 5% are coccoid.
- 16S rDNA sequences revealed that majority of the bacterial species are *Bacillus*.
- Uncharacterized Bacillus species are recognized.

After 4-inj.

Morphological changes after H_2O_2 sterilization in Gram-positive microbes

Bacillus megaterium

Bacillus subtilis

Deinococcus radiodurans

All Gram-positive species tested were susceptible to H₂O₂ (3.6 mg/L)

Morphological changes after H_2O_2 sterilization in Gram-negative microbes

Escherichia coli Citrobacter freundii

Pseudomonas aeruginosa

All Gram-negative species tested were susceptible to H₂O₂ (3.6 mg/L)

Morphological changes after H_2O_2 sterilization in microbes isolated from SAF

Bacillus licheniformis FO-17b Bacillus pumilus FO-36b

Staphylococcus capitis FO-36a

~30% of the SAF microbes were resistant to various doses of H₂O₂ (4~16 mg/L)

More Aluminum oxide layers in the order of 500°C > H₂O₂ > Autoclaving > Untreated

Autoclave

500°C; 60-min

Effect of autoclaving in the adhesion of microbial species on aluminum 6061

Spore-spiked 18-rms polish; Autoclaved;

Spore-spiked mirror polish; non-autoclaved;

Microbes tend to adhere onto Aluminum surfaces once oxide layers were made available April 3-5, 2000

Spore-spiked mirror polish; Autoclaved;

B. subtilis cells; mirror polish; non-autoclaved

Conclusion

- **Image:** The atmosphere of a spacecraft assembly facility should be considered as extreme environment. Many strains isolated from the JPL-SAF were sopore-formers and exhibited intense growth at 60°C, and at 10% NaCl. Majority of these cultivable isolates were identified as *Bacillus* species.
- **16S** ribosomal RNA sequence analysis revealed existence of *Bacillus licheniformis*, *B. pumilus*, *B. cereus*, *B. subtilis*, *Staphylococcus capitis*, *Planococcus citreus* and *Micrococcus lylae*.
- **XA** novel uncharacterized *Bacillus* sp. that produce unusually big spores was isolated.
- \approx Eight strains exhibited resistance to various doses of H_2O_2 vapor.
 - B. licheniformis (4 strains); B. pumilus (3 strains); S. capitis (1 strain).
 - Representatives of various microbes procured from culture collection were susceptible where as 30% of the wild strains isolated from SAF showed resistance to H₂O₂ vapor.
- \gg Isolation of microbes that are resistant to H_2O_2 vapor has significant implications for the quality of products in the pharmaceutical and spacecraft industries that depend on low-heat sterilization technology.